Nutrient Management Categories

Revisions and Discussion

Why different categories?

Scientific Rationale

- Less known about "natural" conditions among valley sites and Great Salt Lake
 - Interpretation of indicators potentially differs
 - Greater uncertainty for numeric indicators
- Unalterable conditions modify nutrient responses
 - Need site-specific endpoints among sites with extensive habitat modification

Why different categories?


Socioeconomic Rationale

- Significant economic costs should require greater scientific certainty
 - Limited resources, so efficiency is important
- Different sources of nutrients require different management solutions
- Headwaters warrant greater protection
- Iterative progress!

Numeric Standards and Indicators: Purpose

- Optimize monitoring resources
 - Tiered Monitoring
- Identify sites with nutrient-related problems
 - Assessment
- Establish Clear and Objective Endpoints
 - Water Quality Based Effluent Limits (WQBELs)
 - TMDL goals and objectives
 - More efficient resource management

Tiered Monitoring

Start With

- less resource-intensive data
- From many places

Then

Follow-up with more difficult or expensive monitoring efforts

Before

Making more expensive and costly management decisions

Which leads to

- Better Science
- More defensible management decisions

Tiered Monitoring: Different Immediate Goals

Headwaters

- Maintain high water quality
- Easily and inexpensively identify sites with nutrient-related problems

Intermediate Waters

- Maximize limited resources
- ❖ Account for site-specific modifications to nutrient responses

Habitat-Limited Waters

- Identify best attainable conditions
- Develop site-specific interpretations of indicators

TMDL Waters

Accurately quantify sources and loads

Great Salt Lake

Basic research

Tiered Monitoring

What have we accomplished?

- Developed new and innovative approaches
 - Field SOPs
 - Analytical Methods

What remains?

- Logistics
 - What specifically to collect in each tier?
 - How should this vary among nutrient management categories?
- Ongoing Investigations
 - What additional methods should be evaluated?

Assessment: Different Approaches

Headwaters

- Focus on water chemistry
- Modify criteria with indicators, if appropriate, via TMDL process

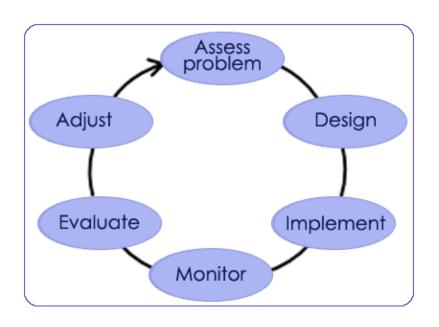
Intermediate Waters

- Use both chemistry and ecological responses to make assessment decisions
- Permit limited based on readily achievable technology, unless site-specific standards or TMDLs suggest otherwise

Habitat-Limited Waters

- Regional N&P indicators are not applied until confirmed
- List cause as "unknown" until all causes are quantified
- Permit limited based on readily achievable technology, unless site-specific standards or TMDLs suggest otherwise

TMDL Waters


- ❖ Regional N&P indicators are not applied until confirmed
- Phased implementation schedules, with "Straight to Implementation" approaches
- Establish appropriate ecological goals with site-specific

Prioritization

- Preliminary analyses suggest that many sites will indicate the potential nutrientrelated problems.
- Site-specific modifications are both technically challenging and resource intensive.
- Prioritization schemes are needed to ensure continual progress toward solving anthropogenic eutrophication problems.

Adaptive Management

- Central Tenet: Management and Science involves continual learning, therefore uncertainty in inevitable.
- Process allows progress toward solutions despite scientific uncertainty.

Straight to Implementation: <u>Common</u> to all Categories

Convene Stakeholders

Establishes <u>Cooperation</u> and <u>Collaboration</u>

Immediately Implement Easiest Nutrient Reductions

<u>Proactive</u> and <u>Adaptive</u>

Establish Ecological Goals

Provides <u>flexibility</u> toward solutions

Monitor Progress

Accountability

Address Scientific Uncertainty

- Improves technical <u>defensibility</u>
- Ensures <u>efficient</u> allocation of resources (the expensive stuff comes later)